Cultural Learning in a Dynamic Environment: an Analysis of Both Fitness and Diversity in Populations of Neural Network Agents
نویسندگان
چکیده
Evolutionary learning is a learning model that can be described as the iterative Darwinian process of fitness-based selection and genetic transfer of information leading to populations of higher fitness. Cultural learning describes the process of information transfer between individuals in a population through non-genetic means. Cultural learning has been simulated by combining genetic algorithms and neural networks using a teacher/pupil scenario where highly fit individuals are selected as teachers and instruct the next generation. This paper examines the effects of cultural learning on the evolutionary process of a population of neural networks. In particular, the paper examines the genotypic and phenotypic diversity of a population as well as its fitness. Using these measurements, it is possible to examine the effects of cultural learning on the population's genetic makeup. Furthermore, the paper examines whether cultural learning provides a more robust learning mechanism in the face of environmental changes. Three benchmark tasks have been chosen as the evolutionary task for the population: the bitparity problem, the game of tic-tac-toe and the game of connect-four. Experiments are conducted with populations employing evolutionary learning alone and populations combining evolutionary and cultural learning in an environment that changes dramatically.
منابع مشابه
An Empirical Analysis of Cultural Learning: Examining fitness, diversity and changing environments in populations of game-playing neural network agents
vi Publications 1
متن کاملIncreasing Population Diversity Through Cultural Learning
A number of learning models are commonly employed in the simulation of social behaviour. These include population learning, lifetime learning and cultural learning. Population learning allows populations as a whole to evolve over time, typically through a Darwinian model of natural selection. Lifetime learning allows individuals to acquire knowledge during their lifetimes and cultural learning ...
متن کاملNavigation of a Mobile Robot Using Virtual Potential Field and Artificial Neural Network
Mobile robot navigation is one of the basic problems in robotics. In this paper, a new approach is proposed for autonomous mobile robot navigation in an unknown environment. The proposed approach is based on learning virtual parallel paths that propel the mobile robot toward the track using a multi-layer, feed-forward neural network. For training, a human operator navigates the mobile robot in ...
متن کاملIterative learning identification and control for dynamic systems described by NARMAX model
A new iterative learning controller is proposed for a general unknown discrete time-varying nonlinear non-affine system represented by NARMAX (Nonlinear Autoregressive Moving Average with eXogenous inputs) model. The proposed controller is composed of an iterative learning neural identifier and an iterative learning controller. Iterative learning control and iterative learning identification ar...
متن کاملAn Unsupervised Learning Method for an Attacker Agent in Robot Soccer Competitions Based on the Kohonen Neural Network
RoboCup competition as a great test-bed, has turned to a worldwide popular domains in recent years. The main object of such competitions is to deal with complex behavior of systems whichconsist of multiple autonomous agents. The rich experience of human soccer player can be used as a valuable reference for a robot soccer player. However, because of the differences between real and simulated soc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Artificial Societies and Social Simulation
دوره 10 شماره
صفحات -
تاریخ انتشار 2007